Parallel implementation of algorithms for standoff detection in hyperspectral imagery

نویسندگان

  • Antonio Plaza
  • Pablo Martínez
  • Javier Plaza
  • Rosa Pérez
چکیده

Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition algorithms, have demonstrated to be very appropriate tools for standoff detection in many different environments. Compared to other techniques available such as multispectral imaging, which typically collects only tens of images, hyperspectral instruments are capable of collecting hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. While developments in hyperspectral technology hold great promise for advanced standoff detection, they create new processing challenges. In particular, the price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. However, several applications exist where having the desired information calculated in real-time or near real-time is desired, e.g. those focused on the detection and tracking of forest fires, oil spills and other types of chemical contamination. In this paper, we discuss parallel implementations of a novel morphological algorithm for standoff detection in hyperspectral imagery. Several illustrative processing examples are provided, thus allowing an evaluation of the speedup factors provided by implementing the above algorithm, characterized by its combined use of spatial and spectral information, on massively parallel computer facilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

FPGA Design and Implementation of a Fast Pixel Purity Index Algorithm for Endmember Extraction in Hyperspectral Imagery

Hyperspectral imagery is a class of image data which is used in many scientific areas, most notably, medical imaging and remote sensing. It is characterized by a wealth of spatial and spectral information. Over the last years, many algorithms have been developed with the purpose of finding “spectral endmembers,” which are assumed to be pure signatures in remotely sensed hyperspectral data sets....

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003